Rensselaer

Motivation

- Providing a convincing explanation of the an election outcome is an important but difficult task.
- While the most popular voting rules (e.g. Borda, Plurality) are simple enough to understand, some others (e.g. Ranked Pairs, Kemeny-Young) can be more difficult for the general public to understand.
- Past works [1, 2] have approached this problem with deep models however, deep models themselves are difficult to explain.
- Decision trees are an effective way to represent the decision paths taken by a voting rule for an election.
- **Question:** How can we automate this process?

Example

- Local government holds an election with some pre-determined voting rule.
- The government decides to generate an explanation for the voting outcome to get better support from the public.
- The public has no expertise on how the voting rule works, but they can understand simple notions. (e.g. "a swimming pool is more welcomed than a stadium")
- The government wants their explanation to be as simple and correct as possible.

Experimental Settings

Voting Rules: Copeland, Kemeny-Young, Ranked Pairs, Schulze

ML Models: Classification and Regularization Tree (CART), Generalized Optimal Sparse Decision Tree (GOSDT) [3], Hierarchical Shrinkage

To train the decision trees, we extract a feature called *pairwise margin* from the voting profiles

Pairwise Margin: the difference between every possible pair of pairs of candidates, i.e., the difference between the *pairwise victories of two pairs*

Example of pairwise margin: Given a profile with three votes of $[A \succ B \succ C]$, two votes of $[A \succ C \succ B]$, and two votes of $[B \succ A \succ C]$. Table 1 and Table 2 show the pairwise victories and (a subset of) pairwise margins of the profile respectively.

$A \succ B$	$ A \succ C $	$B \succ A$	$B \succ C$	$C \succ A$	$C \succ B$
5	7	2	5	0	2

 Table 1. Example of Pairwise Victory

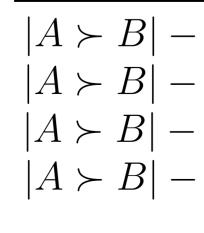


 Table 2. Example of Pairwise Margin

Learning to Explain Voting Rules

Inwon Kang¹ Qishen Han¹ Lirong Xia¹

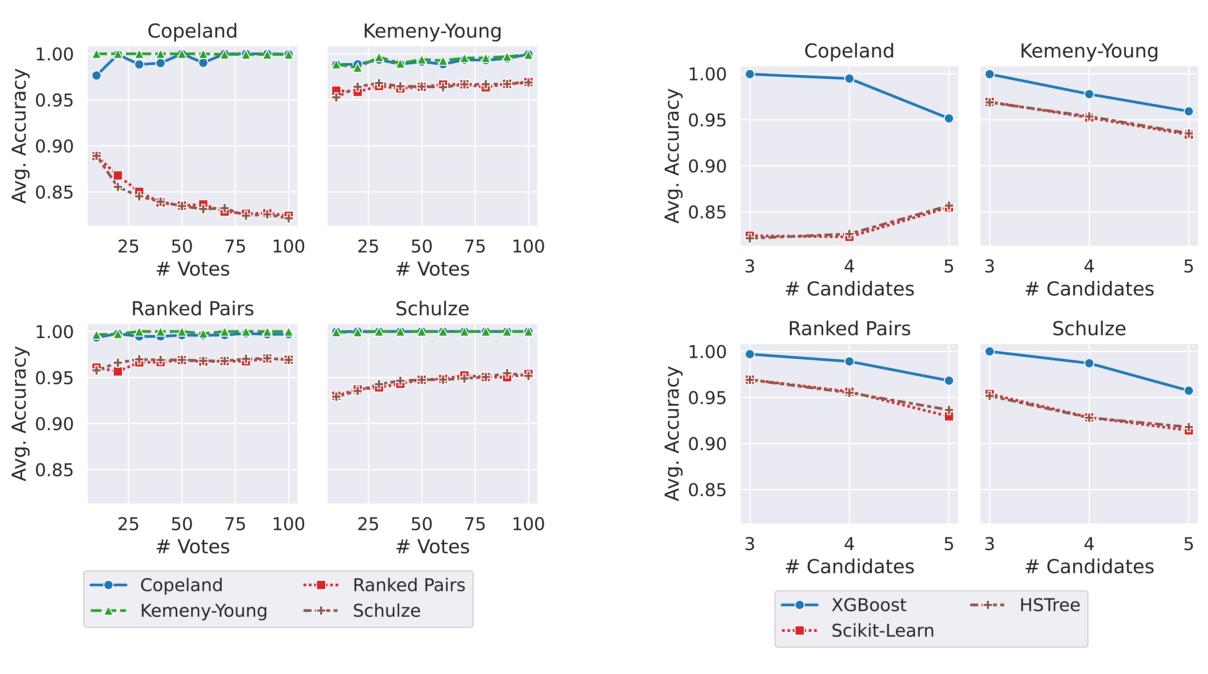
¹Rensselaer Polytechnic Institute

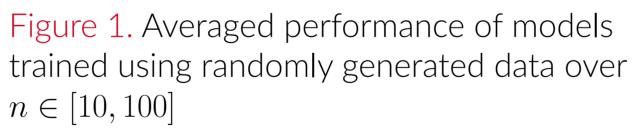
Experiments

- A set of random preference profiles are generated for each voting rule.
- Each preference profile is then converted into the *pairwise margin* features.
- A decision tree is trained for each candidate to predict their victory.

	Copeland	Kemeny-Young	Ranked Pairs	Schulze
XGBoost	1.0	0.99	1.0	1.0
GOSDT	1.0	0.99	1.0	1.0
Scikit-Learn	0.82	0.96	0.95	0.95
HSTree	0.81	0.96	0.95	0.95

Table 3. Final averaged accuracy score of best trees learned by model for m = 3, n = 100





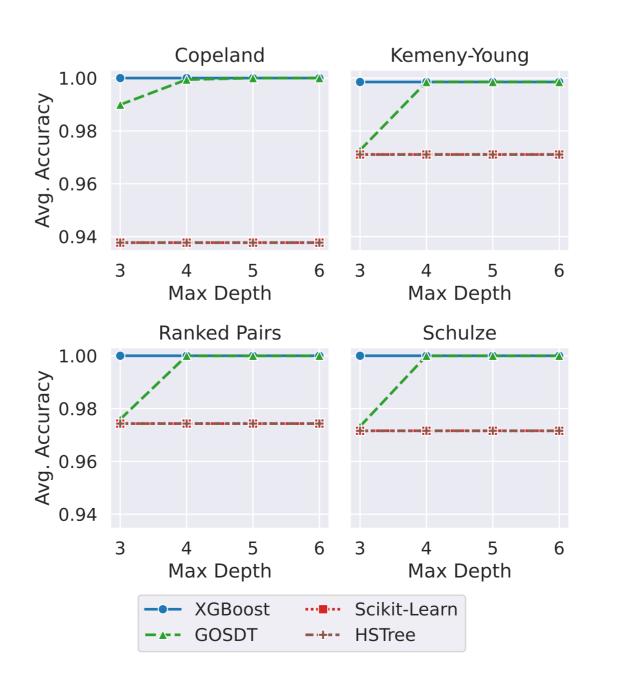


Figure 3. Averaged performance of models trained with $max_depth \in [3, 6]$

$ A \succ C $	-2
$ B \succ A $	3
$ B \succ C $	2
$ C \succ A $	5
	•••

ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, Boston — Nov-2023

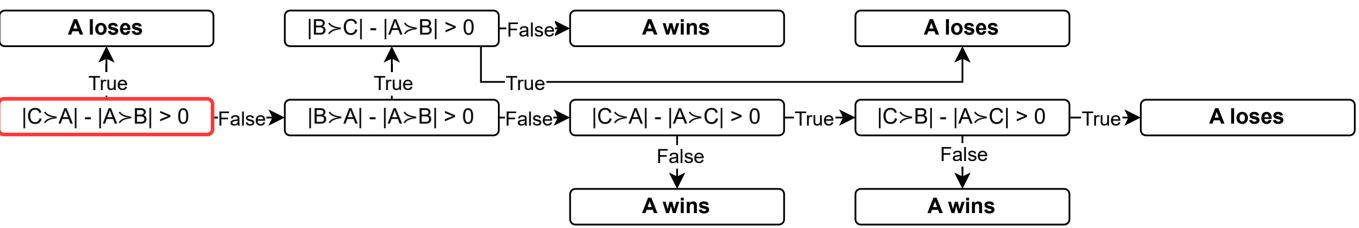
Figure 2. Averaged performance of models

|B≻C| - |A≻B| > 0 A loses

Figure 4. Example GOSDT model trained on Schulze with m = 3

- tree-based ML classifiers.
- decision tree for each outcome for KY, RP and Schulze.
- scaling issues were faced with larger profiles.
- expanded much beyond 5 to be correct.
- Can a voter's preference be represented in a decision tree? If so, how can they be aggregated?
- [1] Cem Anil and Xuchan Bao. Learning to elect.
- [2] Dávid Burka, Clemens Puppe, László Szepesváry, and Attila Tasnádi. Voting: a machine learning approach. European Journal of Operational Research, 2021
- [3] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable optimal sparse decision trees

Example Tree



Conclusion

We proposed a methodology to learn to explain different voting rules using

• We find that voting rules that satisfy the condorcet criterion could be well estimated by decision trees using the *pairwise margin* feature.

• For elections with m = 3, we were able to produce a provably correct

GOSDT algorithm was able to produce the most succinct trees – however,

• As the candidate size grow past 3, the depth of the tree needed to be

Future Work

• Can a new voting rule be created based on decision trees? (Instead of top-down, bottom up approach to designing a voting rule)

References

In Advances in Neural Information Processing Systems, pages 8006–8017, 2021

In Proceedings of the 37th International Conference on Machine Learning, pages 6150–6160, 2020.