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Abstract

Data distillation is a technique of reducing a large dataset into
a smaller dataset. The smaller dataset can then be used to train
a model which can perform comparably to a model trained on
the full dataset. Past works have examined this approach for
image datasets, focusing on neural networks as target models.
However, tabular datasets pose new challenges not seen in im-
ages. A sample in tabular dataset is a one dimensional vector
unlike the two (or three) dimensional pixel grid of images,
and Non-NN models such as XGBoost can often outperform
neural network (NN) based models. Our contribution in this
work is two-fold: 1) We show in our work that data distilla-
tion methods from images do not translate directly to tabular
data; 2) We propose a new distillation method that consis-
tently outperforms the baseline for multiple different models,
including non-NN models such as XGBoost.

Introduction
With the ever growing availability of data and size of ma-
chine learning (ML) models, scalability is an important is-
sue in the ML lifecycle. One way to tackle this issue is with
dataset distillation. Dataset distillation refers to the tech-
nique of reducing a large dataset into a smaller represen-
tative dataset, which the target model can be trained on. It
can lead to significant reduction in training time for various
optimization tasks. It can also help enable data privacy by
providing only the distilled version of the dataset and not
the full original data.

This topic has been actively explored in terms of image
datasets (Wang et al. 2020; Nguyen, Chen, and Lee 2021)
and neural network (NN) based models. But it has not been
as thoroughly explored in the space of tabular datasets. ML
in tabular datasets can also suffer from the same scalability
issues faced in image datasets. In addition, tree-based mod-
els such as XGBoost often outperform neural network based
models in tabular data. Medvedev and D’yakonov (2020)
discuss the properties of dataset distillation in tabular data
in by exploring the method proposed by Wang et al. (2020).
However, this work only considers a synthetic dataset with
a NN which does not address the full scope of the problem.
In this work, we propose a new distillation pipeline for tabu-
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Figure 1: Overview of the final distillation method

lar data and demonstrate its performance against a previous
state of art approach (Nguyen, Chen, and Lee 2021).

Implementation
Dataset Our distillation pipeline takes a tabular dataset
X = {x1, ..., xn}|xi ∈ Rd and its corresponding labels
Y = {y1, ..., yn}|yi ∈ R as input. The goal is to gen-
erate some dataset X̂ = {x̂1, ..., x̂k} and its labels Ŷ =
{ŷ1, ..., ŷk} with k < n which an arbitrary classifier can be
trained on to output non-trivial performance on the original
evaluation – i.e., perform better than random sampling. The
data is then converted into a one-hot format to handle the
categorical features. The continuous features are also binned
to a one-hot format with 10 bins of identical widths. We
only consider datasets with binary labels in our experiments.
However, the distillation model is capable of handling multi-
class datasets as well.
Autoencoder The distillation scheme we propose uses an
autoencoder to project the dataset into a latent space in order
to handle the sparsity of the one-hot encodings, in which we
test different distillation methods. We consider two architec-
tures of autoencoders in our work. The first version is a lin-
ear autoencoder composed of a multilayer perceptron (MLP)
like structure, with ReLU activation after each hidden linear
layer. The second version is a graph neural network (GNN)
based autoencoder using the row-column bipartite graph for-
mulation proposed in Wu, Yang, and Yan (2021).
Multihead Autoencoder We also consider a multi-head
variant of each autoencoder architecture. To achieve this, we
fine-tune the fully trained autoencoder with an MLP clas-
sifier head attached to the encoder for multi-task learning.
The task for the fine-tuning step is to minimize the com-
bined loss Lr + λLc, where Lc is the classification loss and
λ is a weighting factor to balance the two tasks. While this



XGB LR MLP NNC NBC

Base 0.8159 0.7736 0.7802 0.7395 0.6528

RND 0.6917 0.6894 0.6838 0.6480 0.6506

KIP+Base 0.6175 0.6643 0.6946 0.5700 0.6081
KM+Base 0.5698 0.7285 0.7057 0.7074 0.6658

KIP+MLP⋆ 0.6886 0.7098 0.7186 0.6770 0.7006
KIP+GNN⋆ 0.6858 0.7039 0.7116 0.6812 0.6954
KM+MLP⋆ 0.7072 0.7267 0.7279 0.7265 0.7195
KM+GNN⋆ 0.7038 0.7156 0.7241 0.7227 0.7125

Table 1: Average test metric (across 26 datasets) for model
trained on a distilled data of size N = 100 across various
distillation pipelines. Refer to text for additional details. The
best performance among distillation schemes is in bold.

step may degrade the reconstruction performance of the de-
coder network, we find that the label information is effec-
tively captured in the latent space by the encoder network.
Distillation Methods We consider a distance-based clus-
tering method (KMeans or KM) and hierarchical clustering
method (Agglomerative) as a naive baseline. To compare
against the state of art in image data distillation, we consider
kernel induced points (KIP) (Nguyen, Chen, and Lee 2021).
We consider random sampling (RND) as our baseline. Each
distillation algorithm is tested in the original one-hot space
and the latent space of the four autoencoders. When the dis-
tillation is performed in the latent space, we also consider
a version where the classifier is directly trained in the la-
tent space or in the decoded space. For the target distillation
size N for a dataset with l unique labels, the clustering al-
gorithms identify N/l clusters for each label group and uses
each cluster’s euclidean centroid as the distilled output. Sim-
ilarly, KIP randomly picks N/l points per each label group
and optimizes them using the neural tangent kernel of an ar-
bitrary network. Any distillation algorithm which includes
randomness was repeated five times with different seeds and
the average was taken as the final performance.
Optimization Due to the heterogenity of the datasets, we
perform hyperparameter tuning for the 4 autoencoder archi-
tectures discussed above. The base autoencoder is trained for
maximum of 200 epochs, while the multi-head fine-tuning is
performed for maximum of 100 epochs. For all MLP com-
ponents, the number of hidden layers and dropout rates are
tuned. For the GNN encoder, we consider SAGE, GAT and
GCN and also the number of stacked layers. The dimension
of the latent space for every autoencoder was set to 16.

Results
We experiment with 26 different tabular datasets ranging
from 10,000 to 110,000 rows and 7 to 80 features. Due to
the high label imbalance in many datasets, we use balanced
accuracy as the target metric. We first train the autoencoders
for each dataset and apply the different combinations of dis-
tillation methods with the target distillation size N set to
20 ≤ N ≤ 200 in steps of 20. Since many classical mod-
els perform well on tabular datasets, we consider four clas-

sical machine learning models – XGBoost (XGB), Logis-
tic Regression (LR), Nearest Neighbor (NNC), Naive Bayes
(NBC) – as well as an MLP classifier to train on the distilled
dataset. We use python’s scikit-learn and xgboost libraries
for the experiments.

Table 1 shows the average balanced accuracy score (ag-
gregated over the 26 datasets) of the different classifiers
when trained on a dataset distilled to N = 100. Base is
the performance of a tuned model on the whole dataset in its
original representation. RND is the random sampling base-
line. {X}+Base is the application of distillation method or
DM {X} on the original data representation. {X}+{Y} is the
application of DM {X} on the latent representations gener-
ated by the autoencoder or AE {Y}. MLP⋆ and GNN⋆ are
the multi-head variants of the AE.

With the exception of logistic regression, we find that us-
ing KMeans in the multi-head MLP encoder’s latent space
outputs the best performance. While using the multi-head
encoder also helps the performance of KIP, we find that
only effective for the MLP classifier. Agglomerative clus-
tering also performed comparably to KMeans, but KMeans
outputted a better performance in most datasets. Perfor-
mance using the multi-head GNN encoder’s latent space was
comparable to that of the MLP encoder and even outper-
formed on some datasets, although the MLP autoencoder
had a higher average performance. However, it is important
to note that the GNN architecture uses far less parameters
(between 5 to 10 % of the MLP encoder), which could lead
to better scalability for large datasets. The GNN encoders
have around 4,000 parameters on average while the MLP
encoders have around 95,000.

Conclusion
We proposed and tested a new distillation method that works
for tabular datasets. We tested our proposed pipeline with
multiple autoencoder architectures and distillation methods
on 26 different tabular datasets. In our experiments, we find
that the multi-head MLP autoencoder can be used to effec-
tively distill large tabular datasets. We also find that using
naive clustering methods such as KMeans actually leads to
better performance with classical ML models. This shows
that the data distillation methods for image datasets which
relies on the gradients produced by NNs may not translate
directly to tabular datasets.
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