Rensselaer

Inwon Kang¹

What is Data Distillation?

Data Distillation is the task of reducing a large dataset into a **smaller dataset**. The goal is to have a classifier trained on the columns from OpenML(openml.org). smaller dataset perform comparably to a classifier trained on the full dataset. The idea has been proposed and studied for mainly image datasets [1, 2].

Why Tabular Data?

- Tree-based classifiers tend to outperform NN-based models on tabular data [3].
- Tree-based classifiers cannot benefit from incremental training the same way as NN-based models.
- One-hot representation can lead to a blow-up in feature size.

Proposed Approach

- Considered model-agnostic pipelines that uses an autoencoder architecture for latent representation of the data.
- Compared the efficacy of different components by measuring the performance of the downstream classifier trained on the distilled dataset.

Naive Random Sampling **Image Distillation** Kernel Inducing Points(KIP) [1]

Table 1. Baselines considered.

Method	Description	
Autoencoder Distillation Metho Centroid Method [*] Output [†]	None / Vanilla / Supervised-FT d K-Means / Agglomerative / KIP * Mean / Nearest encoded / decoded	Feature 1
ole 2. Hyperparmet *: Only applic †: Only applic	ers considered for distillation pipelines. able to clustering-based methods. cable when autoencoder is used.	Feature 2

Experiment Details

- Downstream classifiers: XGBoost; MLP; Logisitc **Regression**; Naive Bayes and Nearest-Neighbors.
- Consider distill size $N \in [20, 200]$.
- Random iterations are repeated 5 times.
- Total number of pipelines including baseline: 76.

AmazonEmployeeAccess BankMarketing · CardioDisease Credit -CreditDefault -Diabete Electricity Elevators --lomeEquityCredit -House · InternetUsage -LawSchoolAdmissions MagicTelescope -MedicalAppointments MiniBooNE NumerAl Nursery -OnlineShoppers PhishingWebsites -RoadSafety TencentCTRSmall TwoDPlanes

Feature	2 -		
		E	Fea
Feature 1			
Feature 2			

Feature 1

Training Objectives:

 \mathcal{L}_{tabu}

Effective Distillation for Tabular Datasets

Parikshit Ram² Yi Zhou² Horst Samulowitz²

¹Rensselaer Polytechnic Institute

²IBM Research

Datasets

Considered 26 datasets with more than 100,000 rows and 10

Label Distribution

Autoencoders

Figure 1. MLP Architecture

Figure 2. GNN Architecture [4]

$$lar = \frac{1}{n} \sum_{i=1}^{n} \left(-\frac{1}{\log(c_i)} \sum_{j=1}^{c_i} x_{i,j} \log(\hat{x}_{i,j})\right)$$

$$\mathcal{L}_{supervised} = \mathcal{L}_{tabular}(x, \hat{x}) + \alpha \mathcal{L}_{ce}(y, \hat{y})$$

What is the Effect of Supervised Fine-Tuning?

Model	Reconstruction	SFT-Recon
FFN	0.9616±0.0768	0.9570
GNN	0.9608±0.0737	0.9585

 Table 3. Performance comparison of autoencoder architectures.

- SFT does not degrade the reconstruction performance of the decoder.
- SFT results in label-aware encodings in the latent space.

Which Encoder Leads to Better Performance?

Figure 5. Rank of autoencoders grouped by distillation methods and distill size N.

Model	# Enc. Params \downarrow	Dec. Params \downarrow	Clf. Params ↓
FFN	24316 47916 111891	18425 42494 72745	12402 12402 22702
GNN	2832 3880 4904	25711 52645 82795	12402 22702 22702

Table 4. Parameters of autoencoder modules.

GraphSage outperforms GCN and GAT.

(1)

(2)

• FFN-FT leads in overall performance, closely followed by GNN-FT.

Which Distillation Method Leads to Better **Performance**?

Figure 6. Pairwise comparison of distillation methods. Rows denote victories, columns denote losses.

- K-Means has highest tendency to outperform other distillation methods under equal settings.
- Image algorithm (KIP) is outperformed in most cases by every other distillation method.

Conclusion

- Data distillation method for image datasets do not directly translate to tabular datasets.
- K-Means is the most effective distillation method across 26 datasets considered.
- Pipelines using the encoded output of FFN-FT autoencoder with K-Means lead to the best downstream classifier performance.
- GNN-based autoencoders offer the benefit of much smaller parameter size for a small trade-off in performance.

References

- [1] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee.
- Dataset Meta-Learning from Kernel Ridge-Regression, March 2021. [2] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros.
- Dataset Distillation, February 2020.
- [3] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on tabular data?, 2022.
- [4] Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach, October 2021.

